ARTICLE TITLE:

REFERENCE TYPE:

AUTHOR(S):

EDITOR(S):

PUBLICATION DATE:

PUBLICATION TITLE:

VOLUME:

PAGES:

ABSTRACT:

Xylem structure and water transport in a twiner a scrambler and a shrub of Lonicera (Caprifoliaceae)

Journal Article

Chiu S-T; Ewers F

1992

Trees

6

216-224

Wood structure and function was investigated in different growth forms of temperate honeysuckles (Lonicera spp.). All three species had many narrow vessels and relatively few wide ones with the measured K h (flow rate/pressure gradient) approximately 24‚Äì55% of the theoretical K h predicted by Poiseuille\s law. Only the twiner Lonicera japonica had some vessels greater than 50 mgrm in diameter. The twiner also had the narrowest stem xylem diameters suggesting the greater maximum vessel diameter hydraulically compensated for narrow stems. Conversely the free-standing shrub L. maackii had the greatest annual increments of xylem but the least percent conductive xylem implying that a great portion of the wood was involved with mechanical support. The scrambler L sempervirens had low maximum vessel diameter high Huber values (= xylem area/leaf area) and low specific conductivities (= measured K h/xylem area) much like the shrub. The greatest vessel frequency occurred in the scrambler (901 vessels ¬? mm-2) the highest thus far recorded in vines. The lowest Huber value and highest specific conductivity occurred in the twiner suggesting little self-support but relatively efficient water conduction. LSC (= measured K h/leaf area) and maximum vessel diameter of Lonicera vines were near the low end of the range for vines in general.

URL:

Support

The Liana Ecology Project is supported by Marquette University and funded in part by the National Science Foundation.